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Abstract Superpositioning of atoms in an ensemble of

biomolecules is a common task in a variety of fields in

structural biology. Although several automated tools exist

based on previously established methods, manual opera-

tions to define the atoms in the ordered regions are usually

preferred. The task is difficult and lacks output efficiency

for multi-core proteins having complicated folding topol-

ogy. The new method presented here can systematically

and quantitatively achieve the identification of ordered

cores even for molecules containing multiple cores linked

with flexible loops. In contrast to established methods, this

method treats the variance of inter-atomic distances in an

ensemble as information content using a non-linear (NL)

function, and then subjects it to multi-dimensional scaling

(MDS) to embed the row vectors in the inter-atomic dis-

tance variance matrix into a lower dimensional matrix. The

plots of the identified atom groups in a one or two-

dimensional map enables users to visually and intuitively

infer well-ordered atoms in an ensemble, as well as to

automatically identify them by the standard clustering

methods. The performance of the NL-MDS method has

been examined for number of structure ensembles studied

by nuclear magnetic resonance, demonstrating that the

method can be more suitable for structural analysis of

multi-core proteins in comparison to previously established

methods.

Keywords Ensemble � Overlay � Core � Inter-atomic

distance variance matrix � Multi-dimensional scaling

Abbreviations

IVM Inter-atomic distance variance matrix

NL-MDS Non-linear multi-dimensional scaling

Introduction

Three-dimensional structures of biological macromolecules

are widely used for studies like protein functions, drug

design, and evolutional relationships. Structural compari-

sons play an important role in studying the dynamic

properties of biomolecules during molecular dynamics

simulations, structural sequence alignments in homology

modeling, and superposition of nuclear magnetic resonance

(NMR) models. For instance, functional analysis using an

ensemble of NMR structures and the determination of

atoms in ordered cores, can provide important aspects of

structural features, which can be a first step to infer the

function of the target molecules. Analyzing structural

ensembles based on the similarity or heterogeneity of the

atomic coordinates using computational methods and

algorithms has been debated from a long time. This issue

can be crucial, especially in NMR structure analysis,

because typical final results represent an ensemble of many

structures, each of which has to be consistent with the

experimentally determined NMR constraints. The simplest

and easiest way to find the ordered cores is iteratively

‘‘removing one atom and superimposing models’’ until

satisfying specified sizes of cores and root-mean-squared
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distances (RMSDs) of atom pairs. This has been achieved

with some software programs currently available such as

MolMol (Koradi et al. 1996). Another preferably used way

is filtering atoms with dihedral angle order parameters on

backbone atoms less than a specified cut-off (Nilges et al.

1987), and setting boundary residues on detected secondary

structures (Kabsch and Sander 1983). These two methods

were the most popular ways to define ordered core regions

in ensembles, however, they cannot be easily applied for

ensembles containing multiple cores with a complicated

folding topology. In 1997, Kelly et al., developed a more

systematic method using the inter-atomic distance variance

matrix (IVM) and released a program called ‘‘NMRCore’’

(Kelley et al. 1997). Although a variety of other methods

and tools have been established to date (Diamond 1995;

Kelley et al. 1996; Schneider 2000; Snyder and Montelione

2005; Hirsch and Habeck 2008; Mechelke and Habeck

2010), many scientists still prefer to manually identify the

cores by visual inspection on a molecular viewer. Recently,

Kirchner and Güntert (2011) have demonstrated that the

program ‘‘Cyrange’’ using IVM is sufficiently robust in

identifying the most representative core in a structure

ensemble. Figure 1a shows a 2D IVM map for a typical

example of a protein containing two tandem cores

(Kainosho et al. 2006). The distinct cores are easily iden-

tified by Cyrange, each of which can be observed by the

wire-frame representation of superimposed Ca atoms in the

identified residue ranges (see Fig. 1b, c). The 2D map

produced by IVM is obviously not straightforward for the

users to confirm the identified cores in the ensemble, even

though they have been correctly identified in an automated

way. Another problem in the previous methods using IVM

is its less mathematical relevance when the row vector of a

certain atom is merely applied to the clustering. For

example, if there are several cores with largely different

convergence, a direct comparison of variance can be mis-

leading when gauging proximities between atom pairs.

Inthisstudy,anewmethodispresentedthatgreatlyimproves

the analysis of structure core in a more quantitative manner by

combining IVM with non-linear multi-dimensional scaling

(NL-MDS).ItisdemonstratedthataprogramusingNL-MDSina

fullyautomatedidentificationofdefinedcoresperformsbetter

thanprogramsFindCoreandCyrangeforanumberofstructure

ensemblesstudiedusingNMR.
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Fig. 1 Color-coded contour

plot of the inter-atomic distance

variance matrix (IVM)

calculated for the two-core

protein, 2D21.pdb (a). The

structural ensemble contains 20

models that were determined in

an NMR study (Kainosho et al.

2006). X- and Y-axes

corresponding to the amino acid

residue number and colored by

cyan to light green from 0.10 to

2.0 Å2 as indicated by the right

gradation bar. Residues with

variance greater than 2.0 Å2 are

shown as green and those less

than 0.1 Å2 are shown as white.

b and c depict two different Ca
traces overlaid at atoms

identified by the program

Cyrange. RMSD values were

calculated for the Ca atom

coordinates in the ensemble
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Methods

Non-linear scaled inter-atomic distance variance matrix

The IVM, V for N target atoms in an ensemble containing

M models can be given by;

V ¼

0 r2
12 � � � r2

1N

r2
21 0 � � � r2

2N

..

. ..
. . .

. ..
.

r2
N1 r2

N2 � � � 0

2
6664

3
7775

r2
ab ¼

1

M

XM

i¼1

fxiða; bÞ � xaveða; bÞg2

ð1Þ

where the variance r2
ab can be obtained using the distance

xi(a,b) between atoms a and b in the ith model of the

ensemble and the average xave(a,b) across the entire

ensemble. In this study, to quantitatively scale the inter-

atomic distance variance, linear and non-linear functions

are applied to obtain a scaled matrix H:

H ¼

0 h12 � � � h1N

h21 0 � � � h2N

..

. ..
. . .

. ..
.

hN1 hN2 � � � 0

2
6664

3
7775;

linear : hij ¼ koff þ r2
ij

non�linear : hij ¼ logð1þ r2
ij=koff Þ

�
ð2Þ

where koff is the offset value of the distance variance. In the

above matrix, each row vector, hj = (hj1, hj2 … hjN),

hjj = 0 can be used to represent the proximity relationship

between target atoms j and all other atoms (1,2, … N). The

established methods directly use the matrix for clustering

the row vectors to identify ordered cores in a structure

ensemble.

Multi-dimensional scaling

Prior to multi-dimensional scaling of the matrix H, the

norm of the difference vectors between the row vectors hj

and hi are calculated to give the matrix, D:

D ¼

0 d12 � � � d1N

d21 0 � � � d2N

..

. ..
. . .

. ..
.

dN1 dN2 � � � 0

2
6664

3
7775; dij ¼ hi � hj

�� �� ð3Þ

where dij quantitatively describes the distance between the

row vectors hj and hi in the N-dimensional space. Next, the

matrix D can be embedded in a lower dimensional space

using multi-dimensional scaling (MDS) whose theory and

algorithms has been used for distance geometry

calculations (Havel et al. 1983). According to the Young-

Householder theorem (Young and Householder 1938), the

Gram matrix G can be obtained from the matrix D using a

centering matrix Z:

G ¼ � 1

2
Z DZT ;

Z ¼

1� 1=N �1=N � � � �1=N

�1=N 1� 1=N � � � �1=N

..

. ..
. . .

. ..
.

�1=N �1=N � � � 1� 1=N

2
6664

3
7775

ð4Þ

In the matrix Z, each diagonal component is 1� 1
N

whereas

all others are � 1
N

. Because G is an N 9 N symmetric

matrix, it has an eigenvalue–eigenvector decomposition

given by a similarity transform

G ¼ XK XT ð5Þ

where the eigenvalues of K are ordered such that

k1� k2� � � � � kN . To generate lower dimensional plots,

for instance, the two-dimensional matrix X0 is constructed;

X0 ¼
ffiffiffiffiffi
k1

p
p1;

ffiffiffiffiffi
k2

p
p2

� �
pi ¼ pi1; pi2 � � � piNð Þ ð6Þ

where ki and pi corresponding to the eigenvalue and

eigenvector, respectively, of the obtained matrix X at the

ith component.

Clustering atoms in the lower dimensional matrix

The atoms associated with the lower-dimensional matrix X0

undergo standard clustering, to identify the ordered core

atoms in the ensemble. In this study, the centroid-based

method was used to build the hierarchical clustering den-

drogram. In brief, a cluster of atoms is represented by a

central vector, which starts from the N clusters for each

atom. At the Nth level, each cluster is joined together with

the closest vector to generate a new cluster for (N - 1)th

level. The task is repeated until clustering reaches the 1st

level, or the distance between the cluster vectors is greater

than the cutoff value kclust.

Fully automated identification of ordered cores

The method presented here and automated tasks have been

deployed in a single package, FitRobot, compiled with

GCC version 3.4 on a 64-bit Linux system (CentOS ver.

5.7). Figure 2 shows the workflow for the identification of

atoms in ordered cores in an ensemble. In the first step, the

residues having low order parameter (S/ \ 0.8 or

Sw \ 0.8) were eliminated to discard largely flexible

regions such as N- and C-terminal tails and long loops. The

J Biomol NMR (2014) 58:61–67 63

123



angular order parameter for a certain residue in an

ensemble with N structure models can be calculated by;

Sh ¼
1

N

XN

i¼1

cos h

 !2

þ
XN

i¼1

sin h

 !2
2
4

3
5

0:5

ð7Þ

where h is the target dihedral angle. In the next step, the IVM,

V, is calculated to determine the Gram matrix G mentioned

above. The eigenvalue–eigenvector decomposition is

applied to obtain the eigenvalues K and eigenvectors X of

matrix G. In this study, the QR algorithm is used for the

decomposition step, because it is widely known to be more

stable and faster than other methods to solve the eigenvalue–

eigenvector problem by diagonalization of the symmetrical

matrix. FitRobot automatically determines the optimal

dimension to analyze how similar the variance vectors

reduced to the lowest dimension, n, are according to the

reliability of the MDS, g (the default value is 0.95) given

by;

g ¼
Xn

i¼1
k2

i

.XN

i¼1
k2

i ð8Þ

The vectors of the thus-determined dimensionality undergo

the above-mentioned clustering to identify residue ranges

for RMSD fitting. The ensemble coordinates are overlaid

according to the identified residues in each cluster, and

then the RMSD of the Ca atoms for the first model coor-

dinates is calculated. To represent the identified cores as

simply as possible, the coverage of the atom groups in the

coordinates is slightly extended to the residue range with

the RMSD value multiplied by an extension factor kext. The

segments with short contiguous residue range are elimi-

nated based on the cutoff residue length, kshort. The iden-

tified ensemble sets including redundantly selected

residues are filtered based on the identity of selected resi-

dues, kred. At the end of the clustering stage, if the number

of remaining residues is greater than the minimum length

of cluster kshort, the cluster level is raised. The final iden-

tified residue ranges are used for fitting the target ensemble

to generate final coordinate files.

Benchmarks compared with state-of-the-art methods

Benchmarks were performed on the same system compiled

for FitRobot, equipped with a Core i7 920 (2.66 GHz) pro-

cessor (see Fig. 5). In this study, the program tools, FindCore

and Cyrange, which have similar calculation schemes as

previously reported by Snyder et al. Snyder and Montelione

(2005) and Knichner and Güntert (2011) were used as

benchmarks to compare with FitRobot. NMR structure

coordinates for the benchmarks were obtained from the

Protein Data Bank (PDB); 90 proteins with single core and

54 with multi-cores of between 2 and 4 cores (see the Sup-

plemental material; Tables S3 and S4 list all PDB-ID for the

benchmarks). For the benchmarks, the reference subset of

atoms in the ensemble that were overlaid based on the

ordered region were determined through careful inspection

of the molecular structures by an expert in NMR studies

using MolMol (Koradi et al. 1996). For complicated domain

structures, the function ‘‘CalcMatch’’ in molmol was

repeatedly used to automatically define the ordered core and

then manually refined. Prior to the assessments, each of the

structure coordinates in an ensemble was randomly rotated

about the x-, y- and z-axes on the molecular frame. For the

benchmarks using FitRobot, the parameter kclust, kshort and

kred, was set at 2.5, 8, 0.6, respectively, unless stated other-

wise. The structural ensembles were overlaid using the

standard RMS fitting method by generating a rotation matrix

using quaternion methods (Coutsias et al. 2004) with respect

to the atoms identified in the core regions. With this approach

the program exports several sets of structure files, labeled

with the PDB-ID followed by the number of clustering levels

and core-ID. For example, in a three-core protein, 2K6B,

three files, 2K6B_lev_2_0.pdb, 2K6B_lev_2_1.pdb and

2K6B_lev_2_2.pdb are generated. In this case, three cores

(0, 1, and 2) were detected at the clustering level number 2.

To compare the performance of the programs, the following

judging protocols were used: (1) The total number of resi-

dues, Ntotal, providing the RMSD of the Ca atom coordinates

in the ensemble less than RMSDmin, was counted; (2) The

number of correctly identified residues Ncorrect showing the

difference between the RMSD of a targeted atom and a ref-

erence atom for each residue less than the value Ediff was

counted; (3) The content of the correctly identified residues

Calculation of order parameters S for 
backbone torsion angles, and 

Calculation of Inter atomic 
distance Variance Matrix (IVM)

Non-linear scaling IVM

Multi-Dimensional Scaling

Identification of 
Clustered atoms 

Clustering

Previously established 
methods

Filter residues 
S <0.8 or S <0.8

Fig. 2 Workflow illustrating the progress of the fully automated

algorithm that has been developed in this study. In the new methods,

non-linear scaling and multiple dimensional scaling stages are

inserted between the order parameter filtering step and the clustering

row vectors in the IVM matrix step
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Tcorrect = 100.0 9 Ncorrect/Ntotal greater than 50 % suppos-

ing the target core has been correctly identified. Then, if there

is at least one generated ensemble found to be ‘‘overlaid with

correctly identified atoms’’, the number of correctly identi-

fied cores was counted. In this study, RMSDmin and Ediff were

set at 1.5 and 0.5 Å, respectively. The parameters used to

operate FitRobot and the optimized values are summarized

in supplemental Table S1.

Availability

The precompiled programs, source codes, and documen-

tation for the tool used for this study are available from

http://bmrbdep.protein.osaka-u.ac.jp/en/nmrtoolbox.

Results and discussion

To quantitatively determine the variance of atoms in the

IVM, the value of the element in the matrix would be more

relevantly treated as information content in accordance

with Shannon’s entropy theorem. Nabuurs et al. has orig-

inally applied the idea to define a measure of uncertainty

using distance constraints experimentally determined by

NMR analysis (Nabuurs et al. 2003). Converse to this

study, assuming the probability distribution of atoms a and

b can be found equally in a certain distance range from

-Dab/2 to Dab/2, the uncertainty in the distance between

the atoms can be given by

hab ¼ �
Z�Dab=2

Dab=2

1

Dab

log
1

Dab

� �
dx ¼ log Dab ð9Þ

As the above equation only depends on the distance range

Dab, the same idea can be simply applied to the distance

variance r2
ij for atoms i and j to generate a value hij as a

scalable measure using the non-linear function

hij ¼ log 1þ r2
ij=koff

� �
. The greater the value, the less

information there is to restrict the atoms in distance range

Fig. 3 Typical case showing how difficult to identify cores in structure ensemble of multi-core protein. FitRobot, the new method using NL-

MDS, identified two cores (a and b), however, FindCore and Cyrange missed the second core
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Fig. 4 Two dimensional plots

of eigenvalues derived from the

multiple dimensional scaling

analysis. The x- and y-axes

correspond to the 1st and 2nd

components of the factor

loading (see main text). The

maps derived from the NL-

MDS method show obvious

clustering of three cores (a),

whereas those applying a linear

function produce a first and

second core scattered (b)
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from -Dab/2 to Dab/2, which can imply non-bond inter-

actions such as Lennard-Jones interaction, hydrogen bond,

electrostatic interaction and user-defined restraints such as

dihedral restraints and NOE-derived distance restraints.

NMR studies are especially suited to identify ordered cores

in an ensemble, because atoms in short distance proximity

can be more interesting. This distance is approximately

from 2.0 to 5.0 Å corresponding to the lower limit for the

van der Waals boundary of the atoms and the upper limit

for distance constraints. The logarithmic function is suit-

able in emphasizing relatively small distance variance

while suppressing variances with very large values. In this

study, the offset value koff, was set at 0.01 Å2 to maintain

uncertainty hij positive. Any factor multiplying the value hij

in the non-linear function has no effect on the identification

of cores in the NL-MDS and clustering stages (data not

shown).

As mentioned above, the 2D IVM map itself (see

Fig. 1a) is not intuitive enough to assess how correct the

atoms are identified by the conventional methods compared

with the 1D histogram of NL-MDS as shown in Supp-Fig.

S1. For the small multi-core protein, 2JV5, two distinctive

cores can be observed (see Fig. 3a, b). The parameter kclust

was set at 2.5, the program FitRobot correctly identified the

two cores, however, FinCore and Cyrange recognized the

protein as a single-core. This result illustrates well the

limits of the method directly using IVM. As shown in

Fig. 4 with the 2D map derived from NL-MDS using the

logarithmic function, the residues in the two cores are

obviously recognized as distinctive clusters. In contrast, the

MDS using the linear function (Fig. 4b) reveals more

scattered plots in the 2D map, making the residues

involved in the second core difficult to recognize.

The kclust value is the most crucial in the MDS analysis,

as it determines the sensitivity in identifying the residues

involved in multiple cores. First, to optimize the kclust for

the NL-MDS, the benchmarks with the 90 single-core and

54 multi-core ensembles were performed and compared

with the results using the linear functions, which varied

from 0.5 to 4.5. The optimized values for the non-linear

and linear functions were 2.5 and 3.5, respectively. As

shown in Table 1 and Supplement Table S2, the non-linear

function gave better results than the linear function with the

same method. The benchmark results were also compared

with the other programs, Findcore and Cyrange. In the

summary of the benchmark results (Table 1), all three

programs correctly identified the core in the single-core

Table 1 Summary of benchmark results performed for the programs

FitRobot, FindCore, and Cyrange

Examined proteins (number of

cores to be identified)

Correctly identified ratio (%)

(correctly identified cores)

FitRobot FindCore Cyrange

Single-core proteins (90) 100.0 (90) 100.0 (90) 97.8 (88)a

1st core of multi-core proteins

(54)

100.0 (54) 85.2 (46) 96.3 (52)

2nd core of multi-core proteins

(54)

98.1 (53) 42.6 (23) 75.9 (41)

3rd and 4th cores of multi-core

proteins (23)

91.3 (21) 26.1 (6) 56.5 (13)

a Two ensembles 2K8M and 2OYW failed because of segmentation

error and the default limit setting for the chain length, respectively.

Detailed results can be found in Supplemental Tables S3, S4 and S5

multi-core proteins

single-core protein as is in PDB

PDB multi-core protein

Single-core protein

Randomly rotated ensembles

Comparison with the 
reference structures 

Automatically overlaid 
structure ensembles

Benchmark statistics

Test program 

Reference structures

Fig. 5 Benchmark scheme used to assess core identifications in ensembles targeted to reference proteins in a comparison of previously reported

methods
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proteins. In contrast, the benchmark results for the multi-

core proteins show that FitRobot can detect 98 % of sec-

ondary domains but Cyrange and FindCore missed 24 and

*57 % of the domains, respectively. Cyrange and Find-

Core have the tendency to identify fewer cores than does

FitRobot (see Table S3 and S4), which is understandable

because the programs are strongly aimed at identifying

representative cores of the targeted protein ensemble rather

than discovering sub-structures. The program FitRobot has

not only shown better results than established programs,

but also, discovered small and meaningful cores in

ensembles. Supplement Figure S2 shows typical cases of

multi-domain proteins which have not been identified by

Cyrange and Findcore. According to the report by Kirchner

and Güntert (2011) on the intensive application of Cyrange

to more than 6,000 entries in the PDB, 94 % of structures

were considered to be single-core proteins. From this study,

it has been suggested that more minor but actual sub-

structures can be potentially found in the PDB entries.

FitRobot algorithms can assist the user to inspect the dis-

tribution of sub-structures in structure ensembles with

better quantitative evaluations. The scale of the 2D NL-

MDS mapping is less dependent on the shape size and

structural convergence of the proteins.

To summarize, there are two distinct advantages in the

method presented over the conventional ones; (1) Multi-

dimensional scaling using a non-linear function applied to

the inter-atomic distance variance matrix IVM demon-

strated greater capability in identifying cores in the struc-

ture ensemble of multi-core proteins. (2) By developing

lower dimensional plots of NL-MDS, the analysis provides

a more intuitive approach under visual inspection. Using

standard software such as Microsoft Excel that can display

1D histograms or 2D scattering plots, one can easily find

the clustered residues interactively.

Conclusion

Using NL-MDS, the method presented here is useful in

automatically identifying atoms involved in ordered cores

of macromolecules among structural ensembles. The out-

put of the program as 1D histograms or 2D scattering plots

help in the inspection and refinement of the identified cores

in a more systematic and intuitive manner. The method not

only automates and standardizes identification of the rep-

resentative cores in structure ensembles, but can be used

also for careful inspection of sub-structures associated with

over-constrained or less converging regions arising from

NMR restraints.
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